
4 CROSSTALK The Journal of Defense Software Engineering April 2005

The life cycle of software cost estima-
tion is made of many parts, beginning

with input parameters at the concept stage
and continuing through the function and
implementation stages. Many consider
estimating project scope to be the most
difficult part of software estimation. After
all, how do you input scope early in the life
cycle when the requirements are still
vaguely understood? Consider also that
scope must be estimated, quantified, and
documented in a manner that is under-
standable to management, end users, and
estimating tools. The focus in this article is
scope estimates for new development,
including maintenance builds

The Estimating Life Cycle
First, it is important to recognize the limi-
tations of software cost estimating at the
macro level. As shown in Figure 1, the
typical accuracy of cost estimates varies
based on the current software develop-
ment stage. Early uncertainty in the esti-
mate is largely based on variances in the
estimate’s input parameters. Later uncer-
tainty in the estimate is based on the vari-
ances of the estimating models.

The percentages shown in Figure 1
match this author’s personal experience
and are roughly comparable with figures
found in the Project Management
Institute’s “A Guide to the Project Man-
agement Body of Knowledge” [1].
However, actual numbers will vary widely
based on the type of applications

involved, the estimators’ experience and
policies, and other factors.

Initially, at the concept stage you may
be presented with a vague project defini-
tion. Though the requirements may not
yet be fully understood, the general pur-
pose of the new software can be recog-
nized. At this point, estimates with an
accuracy of ± 50 percent are typical for an

experienced estimator using informal
techniques (i.e., historical comparisons,
group consensus, and so on).

After the requirements are reasonably
well understood, a function-oriented esti-
mate may be prepared. At this point, esti-
mates with an accuracy of ± 25 percent
are typical for an experienced estimator
using the techniques described above.

Finally, after the detailed design is
complete, an implementation-oriented
estimate may be prepared. This estimate is
typically accurate within ± 10 percent.

Estimating Program Scope
The first step in preparing an estimate is
to determine an estimate of the project
scope, or volume. Scope is typically esti-
mated using a variety of metrics, as dif-
ferent portions of the application may be
compatible with different scope metrics.

One measure of program scope is
the number of source lines of code
(SLOC). A source line of code is a
human-written line of code that is not a
blank line or comment. Do not count the
same line more than one time even if the
code is included multiple times in an
application1. We typically work with a
related number – thousands of SLOC
(KSLOC) – when estimating. The
Constructive Cost Model (COCOMO)
popularized SLOC as an estimating met-
ric. The basic COCOMO model and the
new COCOMO II model remain the
most well-known estimating approaches
because of their prevalence in both aca-
demic research settings and as models
embedded into estimating tools.

Let us jump ahead and look at how
we can convert from the number of
KSLOC to an estimate for the project.
We will then discuss approaches to esti-
mating KSLOC in more detail.

Begin with the simplest estimate as
shown in Table 1. If you are aware of the
number of KSLOC your developers
must write, and you know the effort
required per KSLOC, you then could
multiply these two numbers together to
arrive at the person months of effort
required for your project. This concept is
the heart of the estimating models. Table
1 shows some common values that Cost
Xpert researchers have found for this
linear productivity factor. The COCO-
MO II value comes from research by
Barry Boehm [2] at the University of
Southern California. The values for
embedded, e-commerce, and Web devel-
opment come from the Cost Xpert
Group’s [3] research working with a vari-

Estimating and Managing Project Scope for
New Development

William Roetzheim
Cost Xpert Group

Many consider estimating project scope to be the most difficult part of software estimation. Parametric models have been shown
to give accurate estimates of cost and duration when given accurate inputs of the project scope, but how do you input scope
early in the life cycle when the requirements are still vaguely understood? How can scope be estimated, quantified, and docu-
mented in a manner that is understandable to management, end users, and estimating tools? This article focuses on scope esti-
mates for new development, and is applicable for the new development portion of maintenance builds.

Concept
Oriented
Estimate

Concept -
Oriented
Estimate

Function -
Oriented
Estimate

Implementation
Oriented
Estimate

Implementation-
Oriented
Estimate

50% 25% 10%

Typical Cost Estimating Accuracies

Macro Life Cycles

± ± ±

Figure 1: Macro Life Cycle

Cost Estimation

“The first step in
preparing an

estimate is to determine
an estimate of

the project scope,
or volume.”

Estimating and Managing Project Scope for New Development

April 2005 www.stsc.hill.af.mil 5

ety of organizations, including IBM and
Marotz.

Now, let us apply this approach.
Suppose we were going to build an e-com-
merce system consisting of 15,000 LOC.
How many person-months of effort
would this take using just this equation?
The answer is computed as follows:

Effort = Productivity x KSLOC =
3.08 x 15 = 46 Person Months

If all of your projects are small, then
you can use this basic equation.
Researchers have found, however, that
productivity does vary with project size. In
fact, large projects are significantly less
productive than small projects. The prob-
able causes are a combination of increased
coordination and communication time
plus more rework required due to misun-
derstandings.

This productivity decrease with
increasing project size is factored in by
raising the number of KSLOC to a power
greater than 1.0. This exponential factor
then penalizes large projects for decreased
efficiency. Table 2 shows some typical size
penalty factors for various project types.
Again, the COCOMO II value comes
from work by Boehm [2], and values for
embedded, e-commerce, and Web devel-
opment come from work by Cost Xpert
Group [3] and its customers. These values
have been validated by hundreds of Cost
Xpert Group customers/projects, and are
updated over time as warranted by the
research. Note that because the size factor
is an exponential factor rather than linear,
it does not change with project size, but
changes in impact on the end result with
project size.

After we do a size penalty adjustment,
how many person-months of effort would
our 15,000 lines of code e-commerce sys-
tem require? The answer is computed as
follows:

Effort = Productivity x KSLOCPenalty =
3.08 x 151.030 = 3.08 x 16.27 =

50 Person Months

All of this is pretty straightforward. The
next logical question is, “How do I know
my project will end up as 15,000 SLOC?”

There are two approaches to answering
this question that I will address: direct esti-
mation and function points (FPs) with
backfiring. Using either approach, the fun-
damental input variables are determined
through expert opinion, often with your
developers as the experts. The Delphi tech-
nique, involving multiple experts iterating
toward a consensus decision, is a good way

to cross-check the input variables.
Normally, the first step in estimating

the number of LOC is to break down the
project into modules or some other logical
grouping. For example, a very high-level
breakdown might be front-end processes,
middle-tier processes, and database code.
Your developers then use their experience
building similar systems to estimate the
number of LOC required.

We strongly recommend that you
obtain three estimates for each input vari-
able: a best-case estimate, a worst-case esti-
mate, and an expected-case estimate. With
these three inputs, you can then calculate
the mean and standard deviation as follows:

(best + worst + (4 x expected))
Mean = --

6

(worst - best)
Standard Deviation = -----------------------------

6

The standard deviation is a measure of
how much deviation can be expected in the
final number. For example, if the statistical
description of the project is correct and we
ignore risk factors not included in the sta-
tistical spread, the mean plus three times
the standard deviation will ensure that
there is a 99 percent probability that your
project will come in under your estimate.

For more information, refer to [4].

Estimating Function Points
An alternative to direct SLOC estimating
is to start with FPs, then use a process
called backfiring to convert from FPs to

SLOC. Backfiring is described on page 6,
and consists of converting from FPs to
SLOC using a language-driven table look-
up function. FPs were first utilized by
IBM as a measure of program volume.
Counting FPs has evolved over time as
computer programming techniques and
user interface metaphors became more
complex; correct function point counting
is defined in [5] and is often accomplished
using certified FP counting specialists.
The original, basic idea is simple and illus-
trates how it works at a simplified level.
True FP counts are more complicated, of
course. The program’s delivered function-
ality (and hence, cost) is measured by the
number of ways it must interact with the
users.

To determine the number of FPs, start
by estimating the number of external
inputs, external interface files, external
outputs, external queries, and logical inter-
nal files. External inputs are largely your
data-entry screens. External interface files
are file-based inputs or outputs. External
outputs are your reports and static out-
puts. External queries are message or
external function-based communication
into or out of your application. Finally,
logical internal files are the number of
tables in the database, assuming the data-
base was third normal form or better. As
mentioned earlier, these definitions are
simplified, but they serve to illustrate the
basic concept.

To convert from these raw values into
an actual count of FPs, you multiply the
raw numbers by a conversion factor from
Table 3 on page 6 (again, this approach is
a simplification).

Project Type Linear Productivity Factor
(Person Months/KSLOC)

COCOMO II Default 3.13
Embedded Development 3.60
E-Commerce Development 3.08
Web Development 2.51

Project Type Exponential Size Penalty
Factor

COCOMO II Default 1.072
Embedded Development 1.111
E-Commerce Development 1.030
Web Development 1.030

Raw Type Function Point Conversion
Factor

External Inputs 4
External Interface files 7
External Outputs 5
External Queries 4
Logical Internal Tables 10

Language SLOC per Function Point

C++ Default 53
COBOL Default 107
Delphi 5 18
HTML 4 14
Java 2 Default 46
Visual Basic 6 24
SQL Default 13

Table 1: Estimate Example

Typical Cost Estimating Accuracies

Project Type Linear Productivity Factor
(Person Months/KSLOC)

COCOMO II Default 3.13
Embedded Development 3.60
E-Commerce Development 3.08
Web Development 2.51

Project Type Exponential Size Penalty
Factor

COCOMO II Default 1.072
Embedded Development 1.111
E-Commerce Development 1.030
Web Development 1.030

Raw Type Function Point Conversion
Factor

External Inputs 4
External Interface files 7
External Outputs 5
External Queries 4
Logical Internal Tables 10

Language SLOC per Function Point

C++ Default 53
COBOL Default 107
Delphi 5 18
HTML 4 14
Java 2 Default 46
Visual Basic 6 24
SQL Default 13

Table 2: Typical Size Penalty Factors

Cost Estimation

6 CROSSTALK The Journal of Defense Software Engineering April 2005

So, if we had a system consisting of 25
data-entry screens, five interface files, 15
reports, 10 external queries, and 20 logical
internal tables, how many FPs would we
have? The answer is computed as follows:

(25 x 4) + (5 x 7) + (15 x 5) + (10 x 4) +
(20 x 10) = 450 FPs

Backfiring
The only remaining step is to use backfir-
ing to convert from FPs to an equivalent
number of SLOC. This is done using a
table of language equivalencies. Some
common values are shown in Table 4
(C++, COBOL, and SQL from work by

Capers Jones [6] and other values from
research by Cost Xpert Group [3]):

So, to implement the above project
(450 FPs) using Java 2 would require
approximately the following number of
SLOC:

450 x 46 = 20,700 SLOC

and would require the following effort to
implement, assuming that this was an e-
commerce system:

Effort = Productivity x KSLOCPenalty =
3.08 x 20.71.030 = 3.08 x 22.67 =

69.8 Person Months

There are also other approaches to cal-
culating equivalent SLOC from a higher-
level input value. These other approaches
include Internet points, Domino points,
and class-method points to name just a
few. All of them work in a fashion analo-
gous to FPs as just described.

Heuristic Approaches to
Approximating Scope
Estimating Scope by Analogy
This is the software equivalent of market
comps in appraising real estate: You look
for a project that is as close as possible to
your project. Count the physical LOC or
function points in that application. Then,
use a detailed analysis to adjust things up
or down based on differences between the
proposed project and this historic project.

You might find that a new proposed
project is much more complicated than
your database of historic projects. Perhaps
you can combine multiple historic proj-
ects, each corresponding to a piece of the
new project, to arrive at a total estimate of
the scope.

Note that it is better to use this
approach to estimate scope and then use
an estimating tool to estimate effort,
rather than using this approach directly to
estimate effort. Basically, the scope will be
somewhat consistent between similar
projects; however, the effort will have a
high degree of variability due to things
like the people doing the work, the stan-
dards and life cycles used, and the devel-
opment environments. By using historic
data to approximate scope and then using
project-specific data for all of these other
variables, you obtain a much more accu-
rate effort estimate.

Design to Budget and Time-Box
Approaches
It is not unusual for a software develop-
ment budget to be defined before the
requirements are defined or perhaps even
understood. Market factors might drive
the budget. Competitors might define the
budget. Resource limitations might deter-
mine the budget. In these cases, does esti-
mating make any sense? In fact, estimates
are particularly critical under these cir-
cumstances.

The approach is to initialize an esti-
mating tool with appropriate values for all
of the environmental variables (e.g., devel-
opment team capabilities, development
language, life cycle, standard, etc.). Then,
start plugging in values for scope until you
obtain a scope estimate that meets the
external budget constraint. This then
becomes the amount of functionality that
you can deliver for the specified budget.

Throughout the development process
you must manage expectations to ensure
that each step in the process is defining a
system that is no larger in size than the
budgeted scope. The requirements must
be managed along with the design effort,
the physical implementation, and so on.

Project Type Taxonomies
It is possible to use project type tax-
onomies to approximate the FP count of
a system to be built (this approach was ini-
tially proposed by Capers Jones in
“Estimating Software Costs” [6]). The val-
ues shown in Table 5 come from Cost
Xpert Group research and vary somewhat
from the specifics in [6]. It works as fol-
lows: In Table 5, select the numerical value
that corresponds to your selected project

E-Commerce Development 1.030
Web Development 1.030

Raw Type Function Point Conversion
Factor

External Inputs 4
External Interface files 7
External Outputs 5
External Queries 4
Logical Internal Tables 10

Language SLOC per Function Point

C++ Default 53
COBOL Default 107
Delphi 5 18
HTML 4 14
Java 2 Default 46
Visual Basic 6 24
SQL Default 13

Table 3: Function Point Conversion Factor

Object 2

Object Library 4

Proof of Concept 5

Evolutionary Prototype 6

Internal Application 8

External Application 9

Shrink-Wrap Application 10

Component of System 11

New System 12

Compound System 13

Table 5: Project Scope Table

Individual Use 1

Shareware 2

Academic/Engineering 3

Single Location -
Internal

5

Multilocation - Internal 6

Contract Project -
Civilian

7

Contract Project -
Local Government

8

Marketed Commercially 9

State Government 11

State Government -
Federally Funded

13

Federal Project 14

Military Project 15

Function 1

Table 5: Project Scope Table

Embedded Development 1.111
E-Commerce Development 1.030
Web Development 1.030

Raw Type Function Point Conversion
Factor

External Inputs 4
External Interface files 7
External Outputs 5
External Queries 4
Logical Internal Tables 10

Language SLOC per Function Point

C++ Default 53
COBOL Default 107
Delphi 5 18
HTML 4 14
Java 2 Default 46
Visual Basic 6 24
SQL Default 13

Table 4: Language Equivalencies

Estimating and Managing Project Scope for New Development

April 2005 www.stsc.hill.af.mil 7

scope. In other words, are you simply
developing a function? Are you writing an
object? Are you writing a library of
objects? Is this a new shrink-wrap applica-
tion, or a completely new system (e.g.,
missile system)?

Using Table 6, select the numerical
value that corresponds to your selected
project class. In other words, is this devel-
opment for your personal use? Is it share-
ware? Is this a civilian-contract program-
ming project? Is this a military project?

Using Table 7, select the numerical
value that corresponds to your selected
project type. In other words, is this a drag-
and-drop fourth generation language
development? Is this a batch program? Is
it a client-server application? Is it a math-
ematical application? Is it a new social
services program?

Add the three values just obtained
together, and then raise this number to the
2.35 power as shown in the following
equation:

FPs = (ValueScope + ValueClass + ValueType)2.35

This will give you an approximate
value for the number of FPs in the final
delivered application. The actual values
(e.g., 2.35) are simply mathematical curve-
fitting techniques to force this early esti-
mation equation to fit databases of his-
toric projects.

Let us look at a few examples. Suppose
we were asked by a commercial communi-
cation company to estimate the effort
required to create an object that would
perform some signal processing functions.
This object will be our deliverable. We
would use the following values:

Scope = Object
Class = Contract Project - Civilian
Type = Communications

FPs = (ValueScope + ValueClass+ ValueType)2.35

= (2 + 7 + 11)2.35 = 1,141 FPs

Now, suppose we were asked to create a
user interface proof-of-concept for a fixed-
asset tracking system for internal use only:

Scope = Proof of Concept
Class = Single Location-Internal
Type = No Programming (4GL/Drag

and Drop)

FPs = (ValueScope + ValueClass + ValueType)2.35

= (5 + 5 + 1)2.35 = 280 FPs

Finally, suppose we need to estimate the
effort required to build a new welfare sys-
tem to be used by a single state with con-

solidated rules (e.g., there would be no
requirement to deliver tailored versions
for different counties within the state):

Scope = External Application
Class = State Government-Federally

Funded
Type = Social Services

FPs = (ValueScope + ValueClass + ValueType)2.35

= (9 + 13 + 15)2.35 = 4,845 FPs

Conclusion
While determining the scope of new
development is never easy, there are tech-
niques that should help you get into the
right ballpark. Once there, it becomes a
matter of tracking and managing to that
scope, either by ensuring that require-
ments do not grow to exceed the budget-
ed scope or by using engineering change
proposals to obtain additional resources
and time when the requirements do
exceed the planned scope.u

References
1. Project Management Institute. A

Guide to the Project Management
Body of Knowledge (PMBOKGuide).
3rd ed. Newton Square, PA: PMI, 2004.

2. Boehm, Barry, et al. Software Cost
Estimation With COCOMO II. Upper
Saddle River, N.J.: Prentice-Hall, 2000.

3. Cost Xpert Group. “Data Load
3.3(b).” Internal Report. Rancho San
Diego, CA: Cost Xpert Group, 2004.

4. Boehm, Barry. Software Engineering
and Project Management. IEEE Press,
1987.

5. ISO [International Organization for
Standard iza t ion]/Interna t iona l
Electrotechnical Commission 20926:
2003 <www.iso.org>.

6. Jones, Capers. Estimating Software
Costs. McGraw-Hill, New York, 1998
<www.iso.org/en/prods-services/
IOSstore/store.html>.

Note
1. This is a slightly simplified version of

the definition from the Software Engi-
neering Institute’s Definition Checklist
for a Logical Source Statement by R.
Park in “Software Size Measurement:
A Framework for Counting Source
Statements” SEI, Pittsburgh, PA,
1992.

Table 6: Project Class Table

No Programming
(4GL/Drag and Drop)

1

Batch 2

3GL Programming 4

Embedded -
Single Board

5

Database Oriented 6

Client-Server 8

Mathematical 9

Systems 10

Communications 11

Process Control 12

Embedded - Multi-Board 13

Embedded -
Complete System

14

Social Services 15

Table 7: Project Type Table
Table 7: Project Type Table

Object 2

Object Library 4

Proof of Concept 5

Evolutionary Prototype 6

Internal Application 8

External Application 9

Shrink-Wrap Application 10

Component of System 11

New System 12

Compound System 13

Table 5: Project Scope Table

Individual Use 1

Shareware 2

Academic/Engineering 3

Single Location -
Internal

5

Multilocation - Internal 6

Contract Project -
Civilian

7

Contract Project -
Local Government

8

Marketed Commercially 9

State Government 11

State Government -
Federally Funded

13

Federal Project 14

Military Project 15

Table 6: Project Class Table

No Programming
(4GL/Drag and Drop)

1

Batch 2

3GL Programming 4

Embedded -
Single Board

5

Database Oriented 6

Client-Server 8

Mathematical 9

Systems 10

Communications 11

Process Control 12

Embedded - Multi-Board 13

Embedded -
Complete System

14

Social Services 15

Table 7: Project Type Table

Function 1

Table 6: Project Class Table

About the Author

William Roetzheim has
25 years experience in
the software industry
and is the author of 15
software-related books
and over 100 technical

articles. He is the founder of the Cost
Xpert Group, Inc., a Jamul-based organ-
ization specializing in software cost-esti-
mation tools, training, processes, and
consulting.

Cost Xpert Group
2990 Jamacha RD STE 250
Rancho San Diego, CA 92019
E-mail: william@costxpert.com

